Daftar Pustaka Jurnal Internasional

Local Intensity Variation Analysis for Iris Recognition

[1] A.K. Jain, R.M. Bolle and S. Pankanti, Eds., Biometrics: Personal Identification in a Networked Society, Norwell, MA: Kluwer, 1999.

[2] D. Zhang, Automated Biometrics: Technologies and Systems, Norwell, MA: Kluwer, 2000.

[3] T. Mansfield, G. Kelly, D. Chandler and J. Kane, Biometric Product Testing Final Report, issue 1.0, National Physical Laboratory of UK, 2001.

[4] A. Mansfield and J. Wayman, Best Practice Standards for Testing and Reporting on Biometric Device Performance, National Physical Laboratory of UK, 2002.

[5] F.H. Adler, Physiology of the eye: Clinical Application, Fourth edition, London: The C.V. Mosby Company, 1965.

[6] H. Davision, The Eye, Academic, London, 1962.

[7] R.G. Johnson, “Can Iris Patterns be Used to Identify People? ”, Chemical and Laser Sciences Division LA-12331-PR, Los Alamos National Laboratory, Los Alamos, Calif, 1991.

[8] A. Bertillon, “La couleur de l’iris”, Rev. Sci., Vol.36, No.3, pp.65-73, 1885.

[9] J.E. Siedlarz, “Iris: More Detailed than a Fingerprint”, IEEE Spectrum, Vol.31, pp.27, 1994

[10] J. Daugman, “High Confidence Visual Recognition of Persons by a Test of Statistical Independence”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.15, No.11, pp.1148-1161, 1993.

[11] J. Daugman, “Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns”, International Journal of Computer Vision, Vol.45, No.1, pp.25-38, 2001.

[12] J. Daugman, “Demodulation by Complex-valued Wavelets for Stochastic Pattern Recognition”, International Journal of Wavelets, Multi-resolution and Information Processing, Vol.1, No.1, pp.1-17, 2003.

[13] R. Wildes, J. Asmuth, G. Green, S. Hsu, R. Kolczynski, J. Matey, S. McBride, “A Machine-vision System for Iris Recognition”, Machine Vision and Applications, Vol.9, pp.1-8, 1996.

[14] R. Wildes, “Iris Recognition: An Emerging Biometric Technology”, Proceedings of the IEEE, Vol.85, pp.1348-1363, 1997.

[15] W. Boles and B. Boashash, “A Human Identification Technique Using Images of the Iris and Wavelet Transform”, IEEE Trans. on Signal Processing, Vol.46, No.4, pp.1185-1188, 1998.

[16] S. Lim, K. Lee, O. Byeon and T. Kim, “Efficient Iris Recognition through Improvement of Feature Vector and Classifier”, ETRI Journal, Vol.23, No.2, pp.61-70, 2001.

[17] Y. Zhu, T. Tan, Y. Wang, “Biometric Personal Identification Based on Iris Patterns”, Proc. of the 15th International Conference on Pattern Recognition,  Vol.II, pp.805-808, 2000.

[18] L. Ma, Y. Wang, T. Tan, “Iris Recognition Based on Multichannel Gabor Filtering”, Proc. of the 5th Asian Conference on Computer Vision, Vol. I, pp.279-283, 2002.

[19] L. Ma, Y. Wang, T. Tan, “Iris Recognition Using Circular Symmetric Filters”, Proc. of the 16th International Conference on Pattern Recognition, Vol.II, pp.414-417, 2002.

[20] R. Prokop and A. Reeves, “A Survey of Moment-based Techniques for Unoccluded Object Representation and Recognition”, CVGIP: Graphical models and Image Processing, Vol.54, pp.438-460, 1992.

[21] S. Liao, M. Pawlak, “On Image Analysis by Moments”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.18, No.3, pp.254-266, 1996.

[22] S. Loncaric, “A Survey of Shape Analysis Techniques”, Pattern Recognition, Vol.31, No.8, pp.983-1001, 1998.

[23] J. Shen, “Orthogonal Gaussian-Hermite Moments for Image Characterization”, Proc. SPIE, Intelligent Robots and Computer Vision XVI: Algorithms, Techniques, Active Vision, and Materials Handling, pp.224-233, 1997.

[24] J. Shen, W. Shen and D. Shen, “On Geometric and Orthogonal Moments”, International Journal of Pattern Recognition and Artificial Intelligence, Vol.14, No.7, pp.875-894, 2000.

[25] D.L. Swets and J.J. Weng, “Using Discriminant Eigenfeatures for Image Retrival”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.18, No.8, pp.831-836, 1996.

[26] P.N. Belhumeur, J.P. Hespanha and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.19, No.7, pp.711-720, 1997.

[27] W. Zhao, R. Chellappa and P. Phillips, “Subspace Linear Discriminant Analysis for Face Recognition”, Tech Report CAR-TR-914, Center for Automation Research, University of Maryland, 1999.

[28] C. Liu and H. Wechsler, “Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition”, IEEE Trans. on Image Processing, Vol.11, No.4, pp.467-476, 2002.

[29] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, second edition, 1991.

[30] L. Flom and A. Safir, “Iris Recognition System”, U.S. Patent, No.4641394, 1987.

[31] J. Daugman, “Biometric Personal Identification System Based on Iris Analysis”, U.S. Patent, No.5291560, 1994.

[32] R. Wildes, J. Asmuth, S. Hsu, R. Kolczynski, J. Matey and S. Mcbride, “Automated, Noninvasive Iris Recognition System and Method”, U.S. Patent, No.5572596, 1996.

A Web-based graphical user interface for evidence-based decision making for health care allocations in rural areas

daftar pustaka :

  1. Boulos MNK: Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom. International Journal of Health Geographics 2004, 3:1-50.
  2. Gagnon F, Turgeon J, Dallaire C: Healthy public policy: A conceptual cognitive framework. Health Policy 2007, 81:42-55.
  3. Hausman AJ: Implications of Evidence-Based Practice for Community Health. American Journal of Community Psychology 2002, 30:453-467.
  4. Hewison A: Evidence-based management in the NHS: is it possible? Journal of Health Organisation and Management 2004, 18:336-348.
  5. Sanderson I: Making Sense of ‘What Works’: Evidence Based Policy Making as Instrumental Rationality? Public Policy and Administration 2002, 17:61-75.
  6. Fulcher CL, Kaukinen CE: Visualizing the infrastructure of US healthcare using Internet GIS: a community health informatics approach for reducing health disparities. Stud Health Technol Inform 2004, 107 (Pt 2):1197-1201.
  7. Sanderson I: Evaluation, Policy Learning and Evidence-Based Policy Making. Public Administration 2002, 80:1-22.
  8. McLafferty SL: GIS and Health Care. Annual Review of Public Health 2003, 24:25-42.
  9. Schuurman N, Fiedler RS, Grzybowski SC, Grund D: Defining rational hospital catchments for non-urban areas based on travel-time. International Journal of Health Geographics 2006, 5:.

10. Gatrell A, Senior M: Health and health care applications. In Geographical Information Systems: Principles, Techniques, Management and Applications 2nd Abridged edition Edited by: Longley PA, Goodchild MF, Maguire DJ, Rhind DW. New York: John Wiley & Sons; 2005.

11.  Bhargava HK, Sridhar S, Herrick C: Beyond Spreadsheets: Tools for Building Decision Support Systems. IEEE Computer 1999, 32:31-39.

12.  Shim JP, Warkentin M, Courtney JF, Power DJ, Sharda R, Carlsson C: Past, present, and future of decision support technology. Decision Support Systems 2002, 33:111-126.

13.  Westmacott S: Developing decision support systems for integrated coastal management in the tropics: Is the ICM decision- making environment too complex for the developmentbof a useable and useful DSS? Journal of Environmental Management 2001, 62:55-74.

14.  Higgs G: A Literature Review of the Use of GIS-Based Measures of Access to Health Care Services. Health Services and Outcomes Research Methodology 2004, 5:.

15.  Geertman SCM, Van Eck JRR: GIS and models of accessibility potential: an application in planning. International Journal of Geographical Information Science 1995, 9:67-80.

16.  Khan MM, Ali D, Ferdousy Z, Al-Mamun A: A cost-minimization approach to planning the geographical distribution of health facilities. Health Policy Plan 2001, 16:264-272.

17.  Crossland MD, Wynne BE, Perkins WC: Spatial decision support systems: An overview of technology and a test of efficacy. Decision Support Systems 1995, 14:219-235.

18.  Porell FW, Adams EK: Hospital Choice Models: A Review and Assessment of their Utility for Policy Impact Analysis. Medical Care Research And Review 1995, 52:158-195.

19.  Nyerges T, Jankowski P, Tuthill D, Ramsey K: Collaborative Water Resource Decision Support: Results of a Field Experiment. Annals of the Association of American Geographers 2006, 96:699-725.

20.  French S: Web-enabled strategic GDSS, e-democracy and Arrow’s theorem: A Bayesian perspective. Decision Support Systems 2007, 43:1476-1484.

21.  Han SH, Yang H, Im D-G: Designing a human-computer interface for a process control room: A case study of a steel manufacturing company. International Journal of Industrial Ergonomics 2007, 37:383-393.

22.  Hu PJ-H, Ma P-C, Chau PYK: Evaluation of user interface designs for information retrieval systems: a computer-based experiment. Decision Support Systems 1999, 27:125-143.

23.  Saade RG, Otrakji AC: First impressions last a lifetime: effect of interface type on disorientation and cognitive load. Computers in Human Behavior 2007, 23:525-535.

24.  Dye AS, Shaw S-L: A GIS-based spatial decision support system for tourists of Great Smoky Mountains National Park. Journal of Retailing and Consumer Services 2007, 14:269-278.

25.  Bedard Y, Gosselin P, Rivest S, Proulx M-J, Nadeau M, Lebel G, Gagnon M-F: Integrating components with knowledge discovery technology for environmental health decision support. International Journal of Medical Informatics 2003, 70:79-94.

26.  Jarupathirun S, Zahedi FM: Exploring the influence of perceptual factors in the success of Web-based spatial DSS. Decision Support Systems 2007, 43:933-951.

27.  Elvins TT, Jain R: Engineering a human factor-based geographic user interface. Computer Graphics and Applications, IEEE 1998, 18:66-77.

28.  Matthew S, Bambang P: Development of SOVAT: A numericalspatial decision support system for community health assessment research. International journal of medical informatics 2006, 75:771-784.

29.  Chen Y-W, Wang C-H, Lin S-J: A multi-objective geographic information system for route selection of nuclear waste transport. Omega 2008, 36:363-372.

30.  Miranda ML, Galeano MAO, Silva JM, Brown JP, Campbell DS, Coley E, Cowan CS, Harvell D, Lassiter J, Parks JL, Sandelé W: Building Geographic Information System Capacity in Local Health Departments: Lessons From a North Carolina Project. American Journal of Public Health 2005, 95:2180-2185.

31.  McLafferty S, Grady S: Immigration and Geographic Access to Prenatal Clinics in Brooklyn, NY: A Geographic Information Systems Analysis. American Journal of Public Health 2005, 95:638-640.

32.  Kamadjeu R, Tolentino H: Web-based public health geographic information systems for resources-constrained environment using scalable vector graphics technology: a proof of concept applied to the expanded program on immunization data. International Journal of Health Geographics 2006, 5:24.

33.  Deshpande A, Jadad AR: Web 2.0: Could it help move the health system into the 21st century? The Journal of Men’s Health & Gender 2006, 3:332-336.

34.  Barsky E, Purdon M: Introducing Web 2.0: Social networking and social bookmarking for health librarians. Journal of the Canadian Health Library Associations 2006, 27:65-67.

35. Greaves M, Mika P: Semantic Web and Web 2.0. Web Semantics: Science, Services and Agents on the World Wide Web 2008, 6:1-3.

36.  Hendler J, Golbeck J: Metcalfe’s law, Web 2.0, and the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide Web 2008, 6:14-20.

37.  Boulos MNK, Wheeler S: The emerging Web 2.0 social software: an enabling suite of sociable technologies in health and health care education. Health Information & Libraries Journal 2007, 24:2-23.

38.  Giustini D: Web 3.0 and medicine. British Medical Journal 2007, 335:1273-1274.

39.  Murugesan S: Understanding Web 2.0. IT Professional 2007, 9:34-41.

40.  Cheung K-H, Yip KY, Townsend JP, Scotch M: HCLS 2.0/3.0: Health care and life sciences data mashup using Web 2.0/3.0. J Biomed Inform 2008 in press.

41.  Bentley R, Appelt W, Busbach U, Hinrichs E, Kerr D, Sikkel K, Trevor J, Woetzel G: Basic support for cooperative work on the World Wide Web. International Journal of Human-Computer Studies 1997, 46:827-846.

42.  Jones CV: Introduction to the special issue of decision support systems on user interfaces. Decision Support Systems 1995, 13:1-2.

43.  Bhargava HK, Power DJ, Sun D: Progress in Web-based decision support technologies. Decision Support Systems 2007, 43:1083-1095.

44.  Currim IS, Gurbaxani V, James , LaBelle , Lim J: Perceptual structure  of the desired functionality of Internet-based health information systems. Health Care Management Science 2006, 9:151-170.

45.  Jankowski P, Robischon S, Tuthill D, Nyerges T, Ramsey K: Design Considerations and Evaluation of a Collaborative, Spatio- Temporal Decision Support System. Transactions in GIS 2006, 10:335-354.

46.  Javahery H, Seffah A, Radhakrishnan T: Beyond Power: Making Bioinformatics Tools User-Centered. Communications of the ACM 2004, 47:58-63.

47.  Bandura A, Locke EA: Negative Self-Efficacy and Goal Effects Revisited. Journal of Applied Psychology 2003, 88:87-99.

48.  BC Ministries of Health Services and Health Planning: Standards of Accessibility and Guidelines for Provision of Sustainable Acute Care Services by Health Authorities. Victoria: Province of British Columbia; 2002.

49.  Moylan JA, Fitzpatrick KT, Beyer AJ, GS G: Factors improving survival in multisystem trauma patients. Annals of Surgery 1988, 207:679-685.

50.  McGregor J, Hanlon N, Emmons S, Voaklander D, Kelly K: If all ambulances could fly: putting provincial standards of emergency care access to the test in Northern British Columbia. Canadian journal of rural medicine 2005, 10:163-168.

51.  Boulos MNK: Research protocol: EB-GIS4HEALTH UK – foundation evidence base and ontology-based framework of modular, reusable models for UK/NHS health and healthcare GIS applications. International Journal of Health Geographics 2005, 4:2.

52.  Kay J: Darwin’s marriage and war in Iraq: the missing link. Financial Times. London 2008:9.

On the Root Mean Square Radius of the Deuteron

REFERENCES

  1. S. K. Klarsfeld, J. Martorell, J. A. Oteo, M. Nishimura and D. W. L. Sprung, Nucl. Phys.

A456 (1986) 373.

  1. R. K. Bhaduri, W. Leidemann, G. Orlandini and E. L. Tomusiak, Phys. Rev. C42 (1990) 147.
  2. D. W. L. Sprung, HuaWu and J. Martorell, Phys. Rev. C42 (1990) 863.
  3. M. W. Kermode, S. A. Moszkowski, M. M. Mustafa and W. van Dijk, Phys. Rev. C43 (1991) 416.
  4. W. van Dijk, Phys. Rev. C40 (1989) 1437.
  5. G. M. Shklyarevsky, J. Phys. G20 (1994) 1035.
  6. M. W. Kermode, W. van Dijk, D. W. L. Sprung, M. M. Mustafa, and S. A. Moszkowski, J. Phys. G17 (1990) 105.
  7. C. W. Wong, Phys. Lett. B291 (1992) 363.
  8. R.W. Berard et al., Phys. Lett. B 47 (1973) 355.

10.  G.G. Simon, Ch. Schmitt, F. Borkowski, and V.H. Walther, Nucl. Phys. A333 (1980) 381.

11.  D. W. L. Sprung and Hua Wu, Acta. Phys. Pol. B24 (1993) 503.

12.  S. Platchkov, Czech. J. Phys. 43 (1993) 433.

13.  S. Platchkov et al., Nucl. Phys. A510 (1990) 740.

14.  J.P. McTavish, J. Phys. G 8 (1982) 911.

15.  A. K. A. Azzam, M. A. Fawzy, E. M. Hassan and Yasser M. A. Mustafa, Turk. J. Phys. 29 (2005) 127.

16.  L. Mathelitsch and H. F. K. Zingl, Phys. Lett. B69 (1977) 134.

17.  A. K. A. Azzam, M. A. Fawzy, E. M. Hassan and Yasser M. A. Mustafa, Turk. J. Phys. 30 (2006) 41.

18.  G. G. Simon, Ch. Schmitt, and V. H. Walther, Nucl. Phys. A364 (1981) 285.

19.  N. K. Glendnning and G. Kramer, Phys. Rev. 126, (1962), 2159.

20.  M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Cte, P. Pirs and R. de Tourreil, Phys. Rev. C21 (1980) 861.

21.  [R. V. Reid, Ann. Phys. 50 (1968) 411.

22.  R. de Tourreil and D. W. L. Sprung, Nucl. Phys. A201 (1973) 193.

23.  T. Hamada and I. D. Johnston, Nucl. Phys. 34 (1962) 382.

24.  M. M. Mustafa, Phys. Rev. C47 (1993) 473.

25.  M. M. Mustafa, E. M. Zahran and E. A. M. Sultan, J. Phys. G18 (1992), 303.

26.  M. M. Mustafa, E. M. Hassan, M. W. Kermode and E. M. Zahran, Phys. Rev. C45, (1992) 2603.

27.  M. M. Mustafa (to be published).

28.  V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart, Phys. Rev. C49, (1994) 2950.

29.  R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189.

30.  R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149 (1987) 1.

31.  M.M. Mustafa and E.M. Zahran, Phys. Rev. C38 (1988) 2416.

32.  M.M. Mustafa, Phys. Scr. 40 (1989) 162.

33.  Koester, W. Nistler, and W. Waschkowski, Phys. Rev. Lett. 36 (1976) 1021.

34.  L.J. Allen, J.P. McTavish, M.W. Kermode, and A. McKerrell, J. Phys. G7 (1981) 1367.

AN APPEARANCE-BASED METHOD FOR IRIS DETECTION

References :

  1. A.K.Jain, R.M.Bolle and S.Pankanti, Eds., Biometrics: Personal Identification in a Networked Society. Norwell, MA: Kluwer,1999.
  2. D.Zhang, Automated Biometrics: Technology and Systems, Norwell, MA: Kluwer, 2000.
  3. J.L.Wayman, “Fundamentals of Biometric Authentication Technologies”, International Journal of Image and Graphics, Vol. 1, No. 1, pp. 93-113, 2001.
  4. J.Daugman, “Biometric Decision Landscape”, Technique Report No. TR482, University of Cambridge Computer Laboratory, 1999.
  5. J.Daugman, “High Confidence Visual Recognition of Persons by a Test of Statistical Independence”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 15, No.11, pp.1148-1161, 1993.
  6. J.Daugman, “Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns”, International Journal of Computer Vision, Vol.45(1),pp.25-38, 2001.
  7. R.Wildes, J.Asmuth, et al., “A Machine-vision System for Iris Recognition”, Machine Vision and Applications, Vol.9, pp.1-8, 1996.
  8. R.Wildes, “Iris Recognition: An Emerging Biometric Technology”, Proc. of the IEEE, Vol.85, pp.1348-1363, 1997.
  9. W.W. Boles and B. Boashah, “A Human Identification Technique Using Images of the Iris and Wavelet Transform”, IEEE Trans. on Signal Processing, Vol.46, pp.1185-1188, 1998.

10.  S. Lim, K. Lee, O. Byeon and T. Kim, “Efficient Iris Recognition through Improvement of Feature Vector and Classifier”, ETRI Journal, Vol. 23, No. 2, pp61-70, 2001.

11.  R.G.Johnson, “Can Iris Patterns be Used to Identify People?”, Chemical and Laser Sciences Division LA-12331-PR, Los Alamos National Laboratory,1991.

12.  J.Daugman, “The Importance of Being Random: Statistical Principles of Iris Recognition”, Pattern Recognition, Vol. 36, No. 2, pp. 279-291, 2003.

13.  R. Sanchez-Reillo and C. Sanchez-Avila, “Iris Recognition With Low Template Size”, Proc. Of International Conference on Audio and Video-based Biometric Person Authentication, pp. 324-329, 2001.

14.  C. Sanchez-Avila and R. Sanchez-Reillo, “Iris-based Biometric Recognition using Wavelet Transform”, IEEE Aerospace and Electronic Systems Magazine, pp. 3-6, 2002.

15.  C. Tisse, L. Martin, L.Torres and M. Robert, “Person Identification Technique using Human Iris Recognition”, Proc. of Vision Interface, pp.294-299, 2002.

16.  Y. Zhu, T. Tan, Y. Wang, “Biometric Personal Identification Based on Iris Patterns”, Inter. Conf. on Pattern Recognition (ICPR’2000), Vol.II, pp.805-808,m2000.

17.  Li Ma, Y.Wang, T.Tan, “Iris Recognition Based onm Multichannel Gabor Filters”, Proc. Of the Fifth Asian Conference on Computer Vision,Vol.I, pp.279-283, 2002

18.  Li Ma, Y.Wang, T.Tan, “Iris Recognition Using Circular Symmetric Filters”, Proc. of the Sixteenth International Conference on Pattern Recognition, Vol.II, pp.414-417, 2002

19.  Ming-Hsuan Yang, et al., “Detecting Faces in Images: A Survey”, IEEE Trans. on Pattern Recognition and Machine Intelligence, Vol.24, No.1, pp.34-58, 2002.

20.  S. Loncaric, “A Survey of Shape Analysis Techniques”, Pattern Recognition, Vol.31, No.8, pp.983-1001, 1998.

21.  C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, Vol.2, No. 2, pp.121-167, 1998.

22.  T. Joachims, “A Statistical Learning Model of Text Classification for SVMs”, Proc. of ACM International Conference on Research and Development in Information Retrieval, Vol.24, pp.128-136, 2001.

23.  N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, 2000.

24.  Simon Tong and Daphne Koller, “Support Vector Machine Active Learning with Applications to Text Classification”, Proc. of the 17th International Conference on Machine Learning, pp.999-1006, 2000.

25.  A.M. Martinez, A.C. Kak, “PCA versus LDA”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.23, No.2, pp.228-233, 2001.

26.  B. Gutschoven and P. Verlinde, “Decision Fusion using Support Vector Machines (SVM)”, Proc. of the 3rd International Conference on Information Fusion, 2000.

27.  Souheil Ben-Yacoub, Yousri Abdeljaoued, and Eddy Mayoraz, “Fusion of Face and Speech Data for Person Identity Verification”, IEEE Trans. on Neural Networks, Vol.10, No.5, September 1999.

28.  http://www.sinobiometrics.com

CITY OF REDLANDS GEOGRAPHIC INFORMATION SYSTEMS ADMINISTRATOR

Daftar pustaka :

  1. Title change from Geographic Information Systems Analyst to Geographic Information Systems Coordinator, effective January, 2001.
  2. Title change from Geographic Information Systems Coordinator to Geographic Information Systems Administrator, effective August, 2003.

ANALYTIC HIERARCHY PROCESS AS A DECISION-SUPPORT

SYSTEM IN THE PETROLEUM PIPELINE INDUSTRY

  1. Dey, P. K., Tabucanon M.T., & Ogunlana S.O. (1996a). A Decision Support System for Project Planning. 1996 Transactions of AACE (Association for the Advancement of Cost Engineering) International: Proceedings of the 40th meeting, Vancouver, British Columbia, 23-26 June, 1996. Baltimore: AACE International.
  2. Dey, P. K., Tabucanon M.T. & Ogunlana S.O. (1996b). Petroleum Pipeline Construction Planning: A Conceptual Framework. International Journal of Project Management, 14(4), 231-240.
  3. Dey, P. K., Ogunlana S.O., Gupta S.S. & Tabucanon M.T. (1998). A Risk-Based Maintenance Model for Cross-Country Pipelines. Cost Engineering, 40(4), 24-30.
  4. Dey, P. K. & Gupta S.S. (1999). Decision Support System for Pipeline Route Selection. International Journal of Project Management, 41(10), 29-35.
  5. Kalisch, B. (1999). Achieving Common Ground. American Gas, 81(8), 28-29. Journal online. Available from ABI/Inform, accession no. 10878177.
  6. Mian, S.A. & Dai C.X. (1999). Decision-Making Over the Project Life Cycle: An Analytical Hierarchy Approach. Project Management Journal, 30(1), 40-52.
  7. Montemurro, D., Barnett S. & Gale T. (1998). GIS-Based Process Helps TransCanada Select Best Route for Expansion Line. Oil & Gas Journal, 96(25), 63-71. Journal on-line. Available from ABI/Inform, accession no. 01656557.
  8. Palmer, B. (1999). Click Here for Decisions. Fortune, 139(9), 53-16. Journal on-line. Available from ABI/Inform, accession no. 01807687.
  9. Partovi, F.Y. (1994). Determining What to Benchmark: An Analytic Hierarchy Process Approach. International Journal of Operations & Project Management, 14(Jun), 25-39. Journal on-line. Available from ABI/Inform, accession no. 00915975.

10.  Saaty, T. L. (1990). Decision Making for Leaders. Pittsburgh: RWS Publications.

11.  Santhanam, R. & Guimaraes T. (1995). Assessing the Quality of Institutional DSS. European Journal of Information Systems, 4(3), 159-170.

DECISION SUPPORT SYSTEM IN OIL SPILL MANAGEMENT

  1. Bartholic, J.F., Y.T. Kang, N. Phillips, and C. He. 1996. Saginaw Bay Integrated Watershed Prioritization and Management System. Water Resources Update (the University Council of Water Research Institutes (UCOWR) Issue No. 100, pp. 55-59.
  2. Bartlett, D.J.: Working on the frontiers of science: Applying GIS to the coastal zone. In “Marine and coastal geological information systems”. 2000: pp. 11-24.
  3. Fabbri, K.P. 1998. A methodology for supporting decision making in integrated coastal zone management. Journal of Ocean & Coastal Management. 39, pp. 51-62.
  4. Getter, C.; Thebeau, L.; Ballou, T. & Maiero. D. 1981. Mapping the distribution of protected and valuable, oil sensitive coastal fish and wildlife. In: Proceeding of the 1981 oil spill conference, American Petroleum Institute: Washington, D.C., pp. 325-332.
  5. Jensen, J.R.; Narumalani, S.; Weatherbee, O.; Murday, M.; Sexton, W.J. & Green, C.J. 1993. Coastal environmental sensitivity mapping for oil spills in United Arab Emirates using remote sensing and GIS technology. Geocarto International, vol. 8 (2), pp. 5-13.
  6. Jensen, J.R.; Ramsey III, E.W.; Holmes, J.M.; Michel, J.E.; Savitsky, B. & Davis, B.A. 1990. Environmental sensitivity index (ESI) mapping for oil spills using remote sensing and geographic information system technology. International Journal of Geographical Information System, vol. 4 (2): 181- 201.
  7. Keenan, P.: Using a GIS as a DSS generator. Department of Management Information Systems, University College Dublin, Working paper MIS 95-9, 1997. LMP (League of Municipalities of Philippines), 1998. LMP search for best coastal management programs. The coastal Resource Management Project, Philippines.
  8. Moore, T., K. Morris, G. Blackwell, S. Gibson and A. Stebbing. 1999. An expert system for integrated coastal zone management: A geomorphological case study. Marine Pollution Bulletin, vol. 37, issues 3-7, pp. 361-370.
  9. Neethi, S., Krishnamoorthy, S. 1988. Decision support system (DSS): A critical review. Managerial Decision Support Sstems, Elsevier Science Publishers B.V. (North-Hollan`d).

10.  Pourvakhshouri, S.Z.; Shattri, M. 2003. Decision support system in oil spill management. Journal of Disaster Prevention and Management. 12 (3), pp. 217-21.

11.  Raiffa, Howard with John Richardson and David Metcalfe (2003), Negotiation Analysis: The Art and Science of Collaborative Decision Making, Cambridge: Belknap Press.

12.  Ravan, Sh., 2002. Spatial Decision Support System for Biodiversity Conservation. GIS Development, vol. 1449, issue 9 April (0-0).

13.  Roberts, J., D. Crawford 2004, ‘Developing a Framework for Assessing Oil Spill Consequences: The application of oil spill sensitivity analysis in New Zealand’, Spillcon 2004: Partnership in Practice, Spillcon 2004, http://www.spillcon.com/, pp.1-16

Biometric decision landscapes

  1. J. Neyman and E.S. Pearson, “On the problem of the most efficient tests of statistical hypotheses,” Phil. Trans. Roy. Soc. London, Series A, Vol. 231, 1933, pp. 289-337.
  2. W.W. Peterson, T.G. Birdsall, and W.C. Fox, “The theory of signal detectability,” Trans. I.R.E. PGIT-4, 1954, pp. 171-212.
  3. J.L. Wayman, “Technical testing and evaluation of biometric identification devices,” in Biometrics: Personal Identification in Networked Society (A. Jain, R. Bolle, S. Pankanti, eds), Kluwer, Dordrecht, 1999, pp. 345-368.
  4. R.V.L. Hartley, “Transmission of information,” Bell Syst. Tech. J. Vol. 7, 1928, pp. 535-563.
  5. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. Vol. 93, 1946, pp. 429-457.
  6. R. Viveros, K. Balasubramanian, and N. Balakrishnan, “Binomial and negative binomial analogues under correlated Bernoulli trials,” Am. Stat. Vol. 48, No. 3, 1984, pp. 243-247.
  7. C. Seal, M. Gifford, and D. McCartney, “Iris recognition for user validation,” British Telecommunications Engineering Journal Vol. 16, No. 7, 1997, pp. 113-117.
  8. J. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Analysis and Machine Intelligence Vol. 15, No. 11, 1993, pp. 1148-1161.
  9. J. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A Vol. 2, No. 7, 1985, pp. 1160-1169.

10.  J. Daugman, “Complete discrete 2D Gabor transforms by neural networks for image analysis and compression,” IEEE Trans. Acoustics, Speech, and Signal Processing Vol. 36, No. 7, 1988, pp. 1169-1179.

11.  M.M. Gifford, D.J. McCartney, and C.H. Seal, “Networked biometrics systems – requirements based on iris recognition,” British Telecommunications Engineering Journal, Vol. 17, No. 2, 1999, pp. 163-169.

12.  S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comp. Sys. Sci. Vol. 28, 1984,pp. 270-299.

Fast Artificial Neural Network Library

  1. [Anderson, 1995] J.A. Anderson, 1995, An Introduction to Neural Networks, The MIT Press.
  2. [Anguita, 1993] D. Anguita, Matrix back propagation v1.1.
  3. [Bentley, 1982] J.L. Bentley, 1982, Writing Efficient Programs, Prentice-Hall.
  4. [Blake and Merz, 1998] C. Blake, C. Merz, 1998, UCI repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html
  5. [Darrington, 2003] J. Darrington, 2003, Libann, http://www.nongnu.org/libann/index.html .
  6. [Fahlman, 1988] S.E. Fahlman, 1988, Faster-learning variations on back-propagation, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sef/www/publications/qp-tr.ps , An empirical study.
  7. [LGPL] Free Software Foundation, 1999, GNU Lesser General Public License, Free Software Foundation, http://www.fsf.org/copyleft/lesser.html .
  8. [Hassoun, 1995] M.H. Hassoun, 1995, Fundamentals of Artificial Neural Networks, The MIT Press.
  9. [Heller, 2002] J. Heller, 2002, Jet’s Neural Library, http://www.voltar.org/jneural/jneural_doc/ .

10.  [Hertz et al., 1991] J. Hertz, A. Krogh, R.G. Palmer, 1991, Introduction to The Theory of Neural Computing, Addison-Wesley Publishing Company.

11.  [IDS, 2000] ID Software, 2000, Quake III Arena, http://www.idsoftware.com/games/quake/quake3-arena/ (http://www.idsoftware.com/games/quake/quake3-arena/) .

12.  [Igel and Hüsken, 2000] Christian Igel, Michael Hüsken, 2000, Improving the Rprop Learning Algorithm, http://citeseer.ist.psu.edu/igel00improving.html (http://citeseer.ist.psu.edu/igel00improving.html) .

13.  [Kaelbling, 1996] L.P. Kaelbling, M.L. Littman, A.P. Moore, 1996, Reinforcement Learning: A New Survey, Journal of Artificial Intelligence Research, 4, 237-285.

14.  [LeCun et al., 1990] Y. LeCun, J. Denker, S. Solla, R.E. Howard, L.D. Jackel, 1990, Advances in Neural Information Processing Systems II.

15.  [Nguyen and Widrow, 1990] Reinforcement Learning, Derrick Nguyen, Bernard Widrow, 1990, Proc. IJCNN, 3, 21-26, http://www.cs.montana.edu/~clemens/nguyen-widrow.pdf .

16.  [Nissen et al., 2003] S. Nissen, J. Damkjær, J. Hansson, S. Larsen, S. Jensen, 2003, Real-time image processing of an ipaq based robot with fuzzy logic (fuzzy), http://www.hamster.dk/~purple/robot/fuzzy/weblog/ (http://www.hamster.dk/~purple/robot/fuzzy/weblog/) .

17.  [Nissen et al., 2002] S. Nissen, S. Larsen, S. Jensen, 2003, Real-time image processing of an iPAQ based robot (iBOT), http://www.hamster.dk/~purple/robot/iBOT/report.pdf (http://www.hamster.dk/~purple/robot/iBOT/report.pdf) .

18.  [OSDN, 2003] 2003, SourceForge.net, http://sourceforge.net/ .

19.  [Pendleton, 1993] R.C. Pendleton, 1993, Doing it Fast, http://www.gameprogrammer.com/4-fixed.html .

20.  [Prechelt, 1994] L. Prechelt, 1994, Proben1: A set of neural network benchmark problems and benchmarking rules.

21.  [Riedmiller and Braun, 1993] Riedmiller, Braun, 1993, A direct adaptive method for faster backpropagation learning: The RPROP algorithm, 586-591, http://citeseer.nj.nec.com/riedmiller93direct.html (http://citeseer.nj.nec.com/riedmiller93direct.html) .

22.  [Sarle, 2002] W.S. Sarle, , Neural Network FAQ, ftp://ftp.sas.com/pub/neural/FAQ2.html#A_binary .

23.  [Pemstein, 2002] Dan Pemstein, 2002, ANN++, http://savannah.nongnu.org/projects/annpp/ .

24.  [Tettamanzi and Tomassini, 2001] A. Tettamanzi, M. Tomassini, , Soft Computing, Springer-Verlag.

25.  [Thimm and Fiesler, High-Order and Multilayer Perceptron Initialization, 1997] Georg Thimm, Emile Fiesler, March 1997, High-Order and Multilayer Perceptron Initialization, IEEE Transactions on Neural Networks, 8, 2, 249-259, http://citeseer.ist.psu.edu/thimm96high.html .

26.  [Thimm and Fiesler, 1997] G Thimm, E Fiesler, 1997, Optimal Setting of Weights, Learning Rate, and Gain, http://citeseer.ist.psu.edu/thimm97optimal.html .

27.  [van Rossum, 2003] P. van Rossum, 2003, Lightweight neural network, http://lwneuralnet.sourceforge.net/ .

28.  [van Waveren, 2001] J.P. van Waveren, 2001, The quake III arena bot, http://www.kbs.twi.tudelft.nl/Publications/MSc/2001-VanWaveren-MSc.html (http://www.kbs.twi.tudelft.nl/Publications/MSc/2001-VanWaveren-MSc.html) .

29.  [Zell, 2003] A. Zell, 2003, Stuttgart neural network simulator, http://www-ra.informatik.uni-tuebingen.de/SNNS/ . 79

GIMMI : GEOGRAPHIC INFORMATION AND MATHEMATICAL MODELS INTER-OPERABILITY. THE INNOVATION OF GEOGRAPHIC INFORMATION

REFERENCES :

GIMMI website : http//services.txt.it/gimmi